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Abstract

Taking advantages of reticular proteins and reductive groups on the surface, eggshell membrane (ESM) was
selected to synthesize MnO2 nanoparticles from potassium permanganate through a super simple way in which
ESM acted as both template and reductant. This process avoided harsh reaction conditions or complicated
aftertreatments and thus owned the merits of green synthesis, handy operation, low cost, and easy purification. The
ESM-templated MnO2 nanoparticles (MnO2 NPs/ESM) were characterized, and the content of nanomaterials on the
template was tested. MnO2 NPs/ESM showed a good capacity for decontamination of tetracycline hydrochloride
(TCH). The macroscopical materials can be separated easily by taking the membrane out to stop the degradation
instead of centrifugation or filtration. It was studied that 72.27% of TCH (50 mg/L) was decontaminated in 20 min
by 0.1920 g/L MnO2 nanoparticles, and removal efficiency could reach 83.10% after 60 min under buffered
condition. The kinetics was studied with or without buffer, and it was concluded that the degradation process
followed a pseudo-second-order model. The facile synthesis of materials and effective degradation would facilitate
the nano-MnO2-based decontamination applications.
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Background
Pharmaceuticals and personal care products (PPCPs) are
a kind of emerging water pollutions and are concerned
closely by researchers in consideration of ecology and
human health [1–5]. Antibiotics as a medicine to treat
and prevent bacterial infections are used worldwide, ac-
companying with which upsetting risks to the environ-
ment have gradually appeared [6]. As a representative,
tetracycline (TC) medicines have been used in veterinary
science and aquaculture for years [7]. However, TCs can
hardly be degraded in the environment and thus persist
for a long time [8, 9], which lead to a various negative
influence on the ecosystem or human health [10–13].
Therefore, screening a facile and effective way to decon-
taminate TC-contaminated water has become a hotspot

of research. One promising technique may be the assist-
ance of manganese dioxide nanomaterials.
Manganese dioxide nanomaterials have been exten-

sively studied owing to their unique merits of high sur-
face area, tunable structure, catalytic oxidation activity,
and eco-harmless [14, 15]. Therefore, nano-MnO2-based
applications have covered various fields ranging from ca-
talysis [16, 17], sensors [18, 19], and capacitors [20, 21]
to drug delivery [22, 23] and cancer therapy [24, 25]. By
the same token, MnO2 nanomaterials with adsorption
and oxidation properties have applied to wastewater
treatment. Water pollutants including heavy ions [26],
organic dyes [27], and phenols [28] treated by MnO2

nanomaterials were reported. Meanwhile, antibiotics
such as levofloxacin [29], ciprofloxacin [30], norfloxacin
[31], sulfamethoxazole [32], sulfadiazine [33], cefazolin
[34], lincosamide [35], and TCs [36, 37] have been suc-
cessfully decontaminated through MnO2 treatment.
Specific to TC antibiotics, highly porous MnO2 nano-
sheets were utilized to degrade tetracycline, and pH,
temperature, and dose-based kinetics were investigated
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[38]. A MnO2-based scheme was applied to remove
tetracycline hydrochloride (TCH) and As(III) simultan-
eously, and the interactive effect on arsenic and antibi-
otics during MnO2 treatment was studied [39].
Degradation of tetracycline antibiotics by MnO2 was
performed, and transformation kinetics and pathways
were reported [40]. Though high removal efficiency of
TCs was obtained in the abovementioned works, how-
ever, the degradation operation usually involved in the
centrifugation or filtration in order to separate the ma-
terial from antibiotics solutions, which took much of the
treatment time and made the process complicated.
Eggshell membrane (ESM) as a unique biomaterial

with extraordinary properties has been utilized in mate-
rials science extensively [41]. The main composition of
fiber in ESM is a protein which endows ESM the ability
to bind metal. Noble metal nanomaterials like Ag NPs
and Au NPs were successfully synthesized using ESM as
a template [42–44]. In addition, metal oxide nanomater-
ials such as ZnO [45], Co3O4 [45], PbO [45], Mn3O4

[46], and TiO2 [47] were also prepared through ESM
templating, which made the synthesis facile and under
control and therefore provided a novel path for the syn-
thesis of metal or metal oxide nanoparticles.
In this work, eggshell membrane-templated MnO2

nanoparticles (MnO2 NPs/ESM) were synthesized sim-
ply and quickly by a bio-templating method. Eggshell
membrane played dual roles as a template and a reduc-
tant making nanoparticles dispersed uniformly on the
macroscopical membranes. Combining the oxidizing
MnO2 nanoparticles with the easy-to-manipulate mem-
brane, MnO2 NPs/ESM were further applied to tetra-
cycline hydrochloride decontamination, in which
nanomaterials could be separated easily by simply tak-
ing out of solutions.

Methods
Materials and Apparatus
Deionized water with a conductivity of 18.2 MΩ cm−1

was used in this experiment from a water purification
system (ULUPURE, Chengdu, China). Potassium per-
manganate (KMnO4, Mw = 158.03), MnO2 powder, and
other reagents were at least of analytical grade and pur-
chased from Kemiou Chemical Co. Ltd. (Tianjin, China).
Tetracycline hydrochloride (TCH, USP grade) and gluta-
thione (GSH, 98%) were purchased from Aladdin Re-
agents Company (Shanghai, China). Eggshell membrane
(ESM) was peeled off carefully from a fresh eggshell
which is obtained from Hongye student mess hall of
Taiyuan Institute of Technology. PBS buffer solutions
(0.2 M, pH = 7.0) were prepared by mixing 39 mL
NaH2PO4 solution (0.2 M) and 61 mL Na2HPO4 solu-
tion (0.2 M), and PBS solutions with different pH values
were prepared by titrating the abovementioned solution

with sodium hydroxide or hydrochloric acid solution
(both concentrations were 0.2 M) to the required pH
values.
Scanning electron microscopy (SEM) of MnO2 NPs/

ESM was carried out on a Quanta 200 FEG scanning elec-
tron microscope for the morphology observation. Trans-
mission electron microscopy (TEM) and high-resolution
transmission electron microscopy (HRTEM) of MnO2

NPs were performed on a Tecnai-G20 transmission elec-
tron microscope. The size distribution of as-prepared
MnO2 NPs was obtained at a laser particle sizer (Malvern
Nano-ZS90). X-ray photoelectron spectroscopy (XPS) was
collected on an AXIS ULTRA DLD electron spectrometer
(Kratos) with monochromatic Al Kα radiation for the sur-
face composition and chemical state test of the product.
Thermogravimetry (TG) analysis of ESM and MnO2 NPs/
ESM was measured in air at a heating rate of 10 °C/min
on a Rigaku TG thermal analyzer (Rigaku Co. Japan). Fou-
rier transform infrared spectroscopy (FTIR) from 4000 to
400 cm−1 of ESM and MnO2 NPs/ESM was recorded in
KBr discs on a Tensor II FTIR spectrometer (Bruker,
Germany), and the spectra were processed through decon-
volution. The ultraviolet-visible (UV-vis) absorption spec-
tra of TCH were recorded on a TU-1901 UV-vis
spectrophotometer (Puxi, China).

Synthesis of ESM-Templated MnO2 Nanoparticles
The eggshell membrane-templated MnO2 nanoparticles
(MnO2 NPs/ESM) were synthesized through a straight-
forward and facile method. In a typical process, the egg-
shell membrane was firstly peeled off from a fresh
eggshell manually and washed ten times with deionized
water to remove the needless egg white. After drying
under room temperature, the clean ESM was then cut
into slices with 5 mg weight each. Upon synthesis, ten
slices of ESM were soaked into 20 mL KMnO4 solution
(1 mmol/L) and the open system kept stirring under
room temperature. Thirty-five minutes later, the ESM
slices were taken out and washed ten times with deion-
ized water to remove the redundant solution. At last, the
obtained membranes were dried and stocked at room
temperature for further characterization and use.

Decontamination of TCH
The decontamination of TCH was performed by adding
MnO2 NPs/ESM into the TCH solutions simply and
stirred under room temperature. Twenty slices of MnO2

NPs/ESM were placed into 15 mL TCH solutions
(50 mg/L) which were diluted by PBS buffer solutions
and kept stirring for 60 min. The UV-vis spectra of TCH
solutions after treatment were recorded immediately at
room temperature. All of the absorption intensities of
TCH measurement were set at a wavelength of 358 nm.
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The removal efficiency (R, %) was calculated using the
equation below:

R ¼ C0−C
C0

� 100%

where C0 and C (mg/L) stand for the initial and final
concentrations of TCH in the treatment solutions,
respectively.

Results and Discussion
Mechanism and Monitoring of MnO2 NPs/ESM Synthesis
The synthesis of MnO2 NPs/ESM was performed in an
open system with ESM as biotemplate. The eggshell mem-
brane was composed of many fibrous proteins on which
lots of reductive groups like –OH, –NH2, –SH, etc. were
interspersed. An in situ redox reaction was triggered once
the KMnO4 was introduced. While MnO2 was generated,
it grew gradually around these active groups. As a conse-
quence, it was dispersed uniformly on the surface of fi-
brous proteins to form ESM-templated MnO2 NPs.
Figure 1a displayed the photos of synthesis system at

different times, in which purple KMnO4 solution turned
into light brown gradually, and meanwhile, the white
ESM slices became brown (Fig. 1b, c). To monitor the

synthetic process, the absorption intensity of KMnO4 at
525 nm and pH of this system were investigated in
Fig. 1d, e. As shown, the absorption intensity of KMnO4

decreased with time prolonged, and pH, conversely, im-
proved gradually. Two sets of data both showed a plat-
form after 35 min, and therefore, the synthesis time was
selected. The increasing of pH was attributed to the for-
mation of –OH during the reaction and a reaction
course was speculated below:

ESM (Red) + KMnO4 +H2O→MnO2/ESM (Ox) +
OH¯ + K+

Characterization of MnO2 NPs/ESM
The morphology of the obtained MnO2 NPs/ESM was
investigated by scanning electron microscopy (SEM) in
Fig. 2. Multilayered and intersecting fibrin network was
observed in Fig. 2a, b. After further amplification, lots of
particles were found uniformly coated on the surface of
fibrous proteins. Therefore, it was concluded that ESM
acted not only as a reductant but also a template during
the synthesis. To further investigate the size of MnO2

particles, a laser particle sizer test was carried out. In
order to rule out the possibility that the particles with
4.8 nm were decomposed proteins, MnO2 NPs/ESM and

Fig. 1 a The photos of the synthetic system at different times. b The image of ESM slice before the redox reaction. c The image of MnO2 NPs/
ESM. d The absorption intensity of KMnO4 at 525 nm. e pH of the synthetic system at different times
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equal amounts of blank ESM (control) were first placed
in NaOH solutions (0.1 M) and boiled for 30 min and
then filtered to form solutions to meet the test condi-
tion. It was found in Additional file 1: Figure S1 that the
average size of MnO2 NPs was 4.8 nm. The photos of
MnO2 NPs/ESM before and after NaOH treatment were
displayed in Additional file 2: Figure S2A. It was obvious
that the brown color of the membrane faded evidently
while the membrane kept unchanged after NaOH treat-
ment, indicating that the MnO2 NPs were released from
the template. In thinking about the problem that the size
of the protein from the eggshell may interfere with the re-
sults, the filtrated solutions after NaOH treatment were
obtained from both blank ESM and MnO2 (Add-
itional file 2: Figure S2B) to be colorless and brown, re-
spectively. In addition, the size distribution data of ESM
after NaOH treatment displayed an average size of 1.7 nm
in Additional file 2: Figure S2C. Therefore, the possibility
that the particles with 4.8 nm were decomposed proteins
from ESM itself was ruled out. Based on this, TEM was
captured after the aforementioned filtrate was dialyzed. As
shown in Fig. 2c, spherical nanoparticles were observed
and the size was consistent with the one in
Additional file 1: Figure S1. The HRTEM image in
Fig. 2d indicated a lattice spacing of 2.5 Å that was well
coincident with the (400) lattice plane of α-MnO2 [48].
Besides, X-ray photoelectron spectroscopy (XPS) tech-

nique was carried out for the surface composition and
elemental analysis of the obtained MnO2 NPs/ESM. The

full-scan spectrum (Fig. 3a) indicated that the synthe-
sized material was composed of elements Mn 2p, O 1s,
N 1s, and C 1s. Element C 1s, N 1s, and partial O 1s
came from the template ESM. The partial XPS spectra
of Mn 2p and O 1s were measured to study the details.
As shown in Fig. 3b, two peaks at 653.8 and 642.0 eV
can be assigned to Mn 2p1/2 and Mn 2p3/2, respectively.
The O 1s spectrum (Fig. 3c) can be divided into three
component peaks with binding energy at 532.6, 531.4,
and 530.5 eV, which were attributed to H–O–H, Mn–
O–H, and Mn–O–Mn, respectively. The above data
demonstrated that the as-prepared material was
ESM-templated MnO2 NPs.
To further verify this result, GSH solution was applied

to the test thus obtained material inspired by a special
reaction between GSH and MnO2 [49, 50]. As shown in
Additional file 3: Figure S3, the brown color of MnO2

disappeared after soaking into GSH solution for 1 min,
indicating that the materials coated on ESM were
MnO2. Furthermore, thermogravimetry (TG) analysis
was carried out to measure the mass content of MnO2

on ESM. The black and red curves in Additional file 4:
Figure S4 stood for the mass changes of ESM only and
MnO2 NPs/ESM, respectively. The relative quality of
ESM was almost zero at 600 °C indicating that ESM was
totally burnt out. However, the relative quality of
ESM-templated MnO2 NPs remained at 2.61% after
ESM was burnt out. It was reported that MnO2 was
thermally decomposed at 500 °C and conversed into

Fig. 2 The SEM images of MnO2 NPs/ESM with different scale bars (2 μm (a) and 200 nm (b)). The TEM (c) and HRTEM (d) images of MnO2 NPs,
the scale bars were 10 nm and 5 nm, respectively
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Mn2O3 [51]. Moreover, further thermal decomposition
of Mn2O3 to Mn3O4 occurred above 1000 °C [52].
Therefore, the mass content of 2.61% at 800 °C obtained
in this experiment reflected the content of Mn2O3.
According to the mass conservation of Mn, the ori-
ginal MnO2 content loading on the ESM was calcu-
lated to be 2.88%.
FTIR spectra (Additional file 5: Figure S5) of ESM and

MnO2 NPs/ESM were collected after grinding the mate-
rials into powder. The interactions between proteins and
nanoparticles mainly involve secondary structure changes,
which are reflected on the band of amide I ~ 1650 cm−1

(which may shift a bit) or amide II ~ 1550 cm−1. However,
there were no obvious changes of peak position around
1650 or 1550 cm−1 of ESM before and after MnO2 was in-
volved, which was different from the previously reported
results that could demonstrate the structural change of
protein [53]. In order to get into the details and avoid
missing any minor changes, deconvolution was applied to

these spectra. Even though no observable peaks were
shown up around 1650 or 1550 cm−1, a new peak at
506 cm−1 appeared after MnO2 NPs loading, and it was
associated with the characteristic vibrational mode of
Mn–O [54].
Mn has various oxidation states, so there are a few types

of oxides, such as Mn2O3, MnO, and MnO2. The binding
energy of Mn2O3 is close to that of MnO2. In order to
examine the oxidation state of Mn in this work, the
HRTEM of as-prepared materials was imaged and dis-
played in Fig. 2d. The lattice spacing of 2.5 Å detected is
well coincident with the (400) lattice plane of α-MnO2

[48]. Moreover, our Mn materials were obtained based on
the redox reaction between KMnO4 and ESM under the
neutral condition that favored the formation of MnO2

instead of other oxidation states [55]. Importantly,
as-prepared materials possess the reaction activity with
GSH (Additional file 3: Figure S3), which is also a testimo-
nial that the nanoparticle is MnO2 [49, 50]. It was also

Fig. 3 The XPS (a) full scan, (b) Mn 2p, (c) O 1s spectra of as-prepared MnO2 NPs/ESM
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reported that MnO2 could thermally be decomposed at
500 °C and conversed into Mn2O3 [51]. The TG curve of
the as-prepared materials in Additional file 4: Figure S4
shows an obvious weight loss around 500 °C, indicating
the transformation from MnO2 to Mn2O3, which is an-
other testimony that the oxidation state of Mn is MnO2.

TCH Decontamination by MnO2 NPs/ESM
Taking advantages of oxidative MnO2 NPs and macrosco-
pical template, MnO2 NPs/ESM were applied to tetracyc-
line hydrochloride (TCH) decontamination owing to the
effective removal and easy operation. Figure 4a displayed
the time-dependent absorption intensity of TCH at
358 nm treated by ESM only (black) and MnO2 NPs/ESM
(red). It was shown that absorption intensity kept un-
changed in the presence of ESM only. However, it
dropped sharply first and flattened out gradually under
MnO2 NPs/ESM treatment. This evident contrast dem-
onstrated the capacity of MnO2 NPs/ESM for TCH de-
contamination. Similarly, the UV-vis absorption spectra

of TCH after ESM treatment hardly changed, but the
absorption peak at 358 nm decreased obviously after
MnO2 NPs/ESM decontamination (Fig. 4b). Figure 4c
investigated the absorption spectra variation of TCH, in
which the absorption peak at 270 nm lowered in the
first 10 min, but another peak at 358 nm decreased
along with time was observed. The time-dependent re-
moval efficiency by MnO2 NPs/ESM decontamination
was calculated in Fig. 4d, and it was found that removal
efficiency was 72.27% at 20 min and it can reach
83.10% in 60 min.

Effect of pH and Buffer on TCH Decontamination
The pH played an important role in MnO2-based oxida-
tive degradation, and the effect of pH on TCH decon-
tamination in this work was investigated. Figure 5a
displayed the absorption intensity of TCH before and
after MnO2 NPs/ESM treatment for 60 min under differ-
ent pH, and the corresponding removal efficiency was
calculated in Fig. 5b. It was demonstrated that the

Fig. 4 a The time-dependent absorption intensity of TCH by ESM and MnO2 NPs/ESM treatment. b The UV-vis absorption spectra of TCH before
and after ESM or MnO2 NPs/ESM treatment. c The time-dependent UV-vis absorption spectra of TCH and (d) removal efficiency treated by MnO2

NPs/ESM. (Conditions: 20 slices of MnO2 NPs/ESM or ESM, the initial concentration of TCH was 50 mg/L, controlled pH was 3.0)
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optimal decontamination of TCH by MnO2 NPs/ESM
was achieved under PBS buffer with a pH of 3.0. More-
over, TCH decontamination by MnO2 NPs/ESM without
buffer solution was investigated in Fig. 5c, in which the
absorption intensity of TCH decreased gradually and pH
of the degradation system was steadily improved. The
same phenomenon of pH increase during the decontam-
ination process was also reported in a previous work
[38]. It was worth noting that the removal efficiency
without buffer increased more rapidly than that under a
buffered condition at the beginning (first 20 min). Then
as the time passed, however, the removal efficiency with
buffer exceeded the one without buffer after 30 min
(83.10% for buffered and 78.37% for the unbuffered con-
dition at 60 min). Removal efficiencies were monitored
through concentration variations of TCH which were
calculated from linear calibration plot (Additional file 6:
Figure S6 and Additional file 7: Figure S7). Under the
buffered condition, saline ions from PBS hindered the

diffusion of TCH molecules onto the surface of MnO2

NPs for further reaction, and hence, the reaction rate
was lower than that of without a buffer. However, pH in-
crease of reaction system along with time under unbuf-
fered condition limited the oxidative capacity of MnO2

NPs, and thus, the removal efficiency cannot reach the
one obtained under controlled optimal pH.

Kinetic Study of TCH Decontamination
To further understand the TCH degradation by MnO2

NPs/ESM, the kinetic study was carried out by changing
the TCH initial concentration or dose of MnO2. We in-
vestigated the kinetics of degradation by different
amounts of MnO2 under buffered conditions. Figure 6a
displayed the time-dependent absorption intensity of
TCH degraded by different doses of MnO2 (0.0960,
0.1440, and 0.1920 g/L), and the corresponding removal
efficiencies were calculated in Fig. 6b. And linear kinetic
plots by pseudo-first-order and pseudo-second-order

Fig. 5 a The absorption intensity of TCH before and after degradation and (b) removal efficiency under different pH. c The time-dependent
absorption intensity of TCH and pH variation under unbuffered condition. d Comparison of removal efficiency of TCH under buffered and
unbuffered conditions. (Conditions: 20 slices of MnO2 NPs/ESM, the initial concentration of TCH was 50 mg/L.)
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were fitted in Fig. 6c, d, respectively. Moreover, degrad-
ation at different initial concentrations of TCH (30, 50,
and 70 mg/L) with buffer was studied through monitor-
ing the absorption intensity (Fig. 7a) and removal effi-
ciency (Fig. 7b) at different times. Figure 7c, d fitted the
linear first/second-order kinetic plots to investigate the
kinetics. Similarly, degradation kinetics at different
amounts of MnO2 NPs and different initial TCH
concentrations under unbuffered conditions were stud-
ied in Additional file 8: Figure S8 and Additional file 9:
Figure S9, respectively. Table 1 exhibited the kinetic data
obtained from different conditions. The correlation coef-
ficients were linear-fitted and calculated to demonstrate
the kinetic of TCH degradation by MnO2 NPs/ESM.
Generally, the correlation coefficients calculated through
the pseudo-second-order model were higher than that
through pseudo-first-order, indicating this process was
more consistent with the pseudo-second-order model.
In detail, this pseudo-second-order model had higher

correlation coefficients at small doses of MnO2 or high
initial concentrations of TCH. And either way, correl-
ation coefficients were closer to 1 in the buffered condi-
tions compared with the degradation without a buffer.

Comparison of Commercial MnO2 Powder and Other
Reported Materials
To illustrate the advanced property of as-prepared MnO2

NPs/ESM, the equal amount of commercial MnO2 pow-
der was contrastively tested for TCH decontamination
under the same conditions. Figure 8 showed the removal
efficiency from as-prepared MnO2 NPs/ESM and com-
mercial MnO2 powder with or without a buffer. It was in-
dicated that MnO2 NPs/ESM showed a prominent
advantage over commercial MnO2 powder under both
conditions. Though removal efficiency of around 80%
through MnO2 decontamination was obtained in previous
work [38, 39], it could reach up to 98% under pH= 6.5
through a MnO2 and zero-valent iron (ZVI)-based

Fig. 6 The time-dependent a absorption intensity of TCH and b removal efficiency by different amounts of MnO2 NPs/ESM treatment. c Linear
first-order kinetic plots and d linear second-order kinetic plots by different amounts of MnO2 NPs/ESM treatment. (Conditions: initial
concentration of TCH was 50 mg/L, controlled pH was 3.0)
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permeable reactive barrier (PRB) system [56], which was
attributed to the multiple effects from ZVI coupling
with MnO2. Besides, other materials were also applied
to TC decontamination. Immobilized TiO2 nanobelts
modified by Au and CuS nanoparticles (Au–CuS–TiO2

NBs) displayed a removal efficiency of 96% towards
oxytetracycline (OTC) owing to their superior photo-
catalytic activity [57]. Graphene oxide (GO) as an effi-
cient adsorbent showed a good removal for TC after
24 h (R = 96%) [58]. Powder activated carbon/Fe3O4

magnetic nanoparticles (PAC/Fe3O4 MNPs) were ap-
plied as a catalyst to H2O2-assisted TC degradation,
and removal efficiency of 94.5% was obtained [59]. It
was noticed that the removal efficiency could be en-
hanced by prolonging the treatment time or increasing
the material doses [39]. Nevertheless, all the work
needs complicated degradation measurement and sub-
sequent processing which increase the labor and test
time. The handy operation of our method such as

Fig. 7 The time-dependent a absorption intensity of TCH and b removal efficiency for the degradation of different initial concentrations of TCH.
c Linear first-order kinetic plots and d linear second-order kinetic plots for degradation of different initial concentrations of TCH. (Conditions: a
dose of MnO2 NPs/ESM was 0.1740 g/L, controlled pH was 3.0)

Table 1 The kinetic data under different conditions

Initial conc.a Doseb Bufferc R2 (first-order) R2 (second-order)

50 0.0960 Yes 0.9773 0.9968

50 0.1440 Yes 0.9762 0.9982

50 0.1920 Yes 0.9623 0.9944

30 0.1920 Yes 0.9053 0.9654

50 0.1920 Yes 0.9497 0.9899

70 0.1920 Yes 0.9642 0.9952

50 0.0960 No 0.9637 0.9841

50 0.1440 No 0.8719 0.9126

50 0.1920 No 0.8558 0.9053

30 0.1920 No 0.8775 0.9330

50 0.1920 No 0.8558 0.9053

70 0.1920 No 0.8896 0.9249
aInitial concentration of TCH (mg/L)
bDose of MnO2 (g/L)
cPBS buffer (pH = 3.0)
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neither centrifugation nor filtration would facilitate the
decontamination procedure.

Conclusions
MnO2 nanoparticles were synthesized in this work
through a super easy procedure by mixing the eggshell
membrane and potassium permanganate solutions. This
harsh reaction conditions or complicated aftertreatment
needless method made synthesis and purification process
quickly and handy. The obtained MnO2 nanoparticles
dispersed uniformly onto the surface of fibrous proteins
to form a microcosmic/macroscopic combination mode.
Further, the eggshell membrane-templated MnO2 nano-
particles were applied to tetracycline hydrochloride decon-
tamination. A removal efficiency of 83.10% after 60 min
under the buffered condition and pseudo-second-order
model kinetics were obtained. Most notably, MnO2 NPs/
ESM can be separated easily by taking it out of the solu-
tions, which avoided complex operation like centrifugation
or filtration, making it an advantage in nanomaterial-based
wastewater decontamination.

Additional files

Additional file 1: Figure S1. Size distribution of as-prepared MnO2 NPs.
(TIF 168 kb)

Additional file 2: Figure S2. (A) The photos of MnO2 NPs/ESM before
and after NaOH treatment. (B) The photos of filtrated solutions after
NaOH treatment from blank ESM and MnO2 NPs/ESM, respectively. (C)
Size distribution of ESM after NaOH treatment. (TIF 1576 kb)

Additional file 3: Figure S3. Contrast pictures of MnO2 NPs/ESM (A)
before reaction, (B) right after immersed into GSH aqueous solution
(1 mM) and (C) after 1 min soaking. (TIF 1310 kb)

Additional file 4: Figure S4. The TG curves of ESM (black) and MnO2

NPs/ESM (red). (TIF 501 kb)

Additional file 5: Figure S5. FTIR spectra of ESM and MnO2 NPs/ESM
with deconvolution. (TIF 1223 kb)

Additional file 6: Figure S6. Linear calibration plot for TCH ranging
from 0.1 to 75 mg/L without a buffer. (TIF 165 kb)

Additional file 7: Figure S7. Linear calibration plot for TCH ranging
from 0.1 to 75 mg/L with buffer (pH = 3). (TIF 1673 kb)

Additional file 8: Figure S8. Degradation kinetics of TCH at different
amounts of MnO2 NPs/ESM under unbuffered conditions. The time-
dependent of absorption intensity of TCH (A), removal efficiency by differ-
ent amounts of MnO2 NPs/ESM treatment (B), linear first order kinetic
plots (C) and linear second order kinetic plots (D) with different amounts
of MnO2 NPs/ESM treatment. (conditions: initial concentration of TCH was
50 mg/L, without PBS buffer.). (TIF 4052 kb)

Additional file 9: Figure S9. Degradation kinetics of TCH at different
initial TCH concentration under unbuffered conditions. The time-dependent
of absorption intensity of TCH (A) and (B) removal efficiency for degradation
of different initial concentrations of TCH. (C) Linear first order kinetic plots
and (D) linear second order kinetic plots for degradation of different initial
concentrations of TCH. (conditions: dose of MnO2 NPs/ESM was 0.1740 g/L,
without PBS buffer.). (TIF 860 kb)
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